
Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

The successor to the Great Z80 Computer project . The new Z80 computer is much simplified
in comparison to the original, but in many cases borrows ideas and circuits from it. When it is
working I will be able to extend it as time permits.

Specifications:

 o Processor: Z80B (4MHz 8-bit)
 o Memory: 128 KBytes RAM + 32 KBytes Display RAM
 o Graphics mode 1: 256 x 256 pixels, 16 colours (selectable from 256K colours)
 o Graphics mode 2: 512 x 256 pizels, 4 colours (selectable from 256K colours)
 o Text mode: 64 columns x 32 rows of ROM-generated characters
 o Keyboard: 1980s Maplin experimenters keyboard
 o Monitor: 12-inch Microvitec colour {gallery}newz80/1{/gallery}
 Chipset
 A word about the IC's used in this project. Most of the logic gates are from old circuits or salvaged from old computer boards. The larger chips are pictured to the right, in their static-proof plastic cases ready for insertion in the sockets on the circuit board. Anticlockwise from the top left, they are: UM70C171 (18-bit colour pallette), 681000 (128K static RAM), Z80B microprocessor, 62256 (32K 15nS display RAM) and 28F101 (Flash memory).

The display memory is a 32K static memory. You may recall that in the great Z80 project I had to use dynamic RAM for the display memory. At that time dynamic RAM offered a greater capacity and was faster, at least, for the memory available to me the poor hobbyist. Now very fast static RAM are available. The 32K RAM I use here has an access time of 15 nS, well fast enough for this application. In the text mode, the 64 columns by 32 rows use only 2K of the memory, so I divide the 32K up into 16 selectable screens. Alternatively the CPU could use this memory for data storage if necessary.

 {gallery}newz80/2{/gallery}

As I want this project to be reasonably simple, I also use static RAM for the CPU, in this case a
128K device. For even greater simplicity I should have restricted it to 32K. the 128K chips were
the same price as the 32K ones. So like an idiot I got the 128K chips. Later I remembered that
since the Z80 can only address 64K of memory directly, I would have to mess around with
memory banking. Either that, or only use part of the memory capacity but that would be
untolerably wasteful.

For the character-generator ROM I wanted to use a 28C64 device, which is an electrically erasable read only memory (EEPROM). I had previously used the same chip in my viscometer project . The electrically erasable types are very comfortable to use, as you don't need any ultraviolet lamps to erase the chip contents every time you make a mistake. Unfortunately the only one I could get was in a tiny surface mount package.

To connect this chip, I cut a piece of plain (no copper strips, I never use those) 0.1-inch pitch matrix board in the same size as a standard 28-pin DIL socket. Using 0.6mm solid-core wire I created "pins" about 8mm in length along the edges. I took a piece of household flex and extracted some of the fine copper strands. Some of them I threaded over the board, some under. Some I threaded through pieces of the insulation from the 0.6mm wire used previously. This keeps them all apart so there are no short circuits. I glued the chip to the board using superglue. Then using my very best Surface Mount Technology Assembly robot (ahem) I painstakingly soldered the wires to the tiny pins on the chip. It took me about 4 hours to complete this assembly. Pictured to the right is the final result, stuck in foil-covered polystyrene. Believe me, it's a lot harder than it looks.

 1 / 10

z80
z80.html
viscometer.html

Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

 What about the FLASH memory? This is a 128K device, it functions like an EEPROM. OriginallyI had planned to use this as a hard disk, for saving programs etc. 128K isn't a lot but whenwriting machine code, I suspected it may last a while. Later, I found various interesting pages onthe net concerning the connection of IDE hard drives to 8-bit machines. What I had until thenthought of as a huge task, using a hard drive, seemed a lot simpler than I expected. So I havenow abandoned the FLASH and will attach an IDE hard drive when the time comes. I have anold 110 MByte drive which should be plenty for now. Finally, the UM70C171 colour pallette chip. This contains a pallette of 256 colours, each colourreferences an 18-bit register which is fed to 3 6-bit Digital-to-Analog converters for the videodisplay colours Red, Green and Blue. I had originally intended to use it in the Great Z80 project.I have no idea where you can get this chip from, I got it from Maplin but needless to say theydon't sell things like that anymore. I scanned the UM70C171 datasheet , to view it visit my datasheets page. Keyboard The keyboard in use here is one I bought from Maplin Electronics long ago and used in my previous Z80 computer. It is a basic frame containing the switches. Maplin don't do these keyboard anymore. To the lament of many UK hobbyists they seem to have moved away from components and more towards the consumer electronics market. I built the metal case from aluminium corner right-angled corner pieces which you can buy cheaply from a DIY store. {gallery}newz80/3{/gallery} In the picture you can see the bar-code label still stuck to the front of the case: that's because they use some disgustingly sticky glue which is hard to remove. While building this case, a considerable amount of hacksawing and drilling, with numerous screws and much filing had already caused blisters on my hands and consumed a whole Sunday. I had no further energy to battle with the DIY store's bar code label. The next picture shows the underside of the case, which is made from a piece of aluminium sheet which I happened to have hanging around. No, I don't have a picture of the inside, and unless I feel like blistering my hands again undoing everything it's unlikely there'll ever be one. I connected the keyboard switches in a matrix. 4 lines from the CPU drive a 74LS154 4-16 line decoder chip on a small board in the keyboard, which drives 16 columns in the matrix. {gallery}newz80/4{/gallery} Character Set
 Because I love the Sinclair ZX Spectrum home computer, I decided to use the Spectrum character set. This suits me very well because each character is laid out on an 8 x 8 pixel grid, which is as required by my circuit. In fact, I planned to use the ZX Spectrum character set before building the computer so really the circuit was designed around an 8 x 8 grid. Apart from anything else, the 8 x 8 character grid is in any case easiest to design for.
I obtained the picture shown here by using a ZX Spectrum emulator, and writing a few lines of BASIC to print the entire character set onto the screen. Then I screen dumped the ZX Spectrum emulator window (Alt-Print Screen keys on a PC) and pasted the resulting image into Microsoft Photo Editor. {gallery}newz80/5{/gallery}
 The ZX Spectrum character set uses the standard ASCII character codes, starting with the SPACE character (code 32) at top left in the picture, to the Copyright character at bottom right. The codes below 32 are usually use for control characters. I may use them as control characters too, but wanted to put some patterns in the ROM anyway. So I designed some graphics characters that might be useful, particularly when creating programs requiring text windows, where they can be used as borders around the text. I created this picture using an Excel 97 spreadsheet. {gallery}newz80/6{/gallery}
 Switch Board

Of course when a computer is first made its memory is empty. There are no programs and no
operating system. The computer just sits there and does nothing. It cannot write output to the
monitor, nor can it accept input from the keyboard. All of these things require small programs to
accomplish and somehow, these programs have to get into the computer's ROM. One way of
doing this (the conventional way) is to build some kind of interface to the PC RS232 port and
download programs from a development system running on your PC into the memory of the Z80
computer. Not the way I wanted to do things.

 Accordingly I built the switch board pictured to the right. This has 13 switches connected to the address lines via 74LS245 octal bus tranceiver chips, which allow me to program any memory location in the entire 8K of the character ROM. This ROM is also going to be used for the boot program. The character patterns reside in the top 1K of the memory (128 characters x 8 bytes per character). The remaining 7K will be more than enough to initialise the system and load a larger program from the hard disk (when I get that far). {gallery}newz80/7{/gallery}

8 more switches control every bit of the Z80 databus. The two remaining switches are the
program switch which when ON allows the switches to program the memory, but when OFF
starts the Z80 running at address 0000; and the STTS/WR switch for programming. Unlike the
other switches which are just ordinary 2-way switches, the STTS/WR switch rests in its central
position. Pushing it down to the WR position writes the byte specified by the data switches to
the memory address specified by the address switches. Pushing it to the STTS position writes
the data byte into the display status register on the board.

 2 / 10

datasheets.html#um70c171
datasheets.html
datasheets.html
http://www.maplin.co.uk/

Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

The switches are mounted on a rough piece of copper-clad PCB material. I never use this stuff
for etching real PCB's, instead I occasionally use it to construct shielding or cases. Using these
switches I painstakingly programmed the entire character set from the pictures shown above, bit
by bit into the character ROM. Later I will program a keyboard driver. Then some kind of editor.
That will definitely be the first task, to get away from having to program every bit of every byte
by hand on the switches which makes the fingers sore.

 More Photographs
 Early Construction

 Along with the 12-inch steel ruler. At this stage only the timing generator circuit is complete (page 1 of the circuit diagram) in the bottom right of the picture. I built and tested this first. Later, with the monitor synchronisation signals generated by this circuit, I could then use the video input to visualise signals elsewhere on the board, which was useful for debugging. Elsewhere on the board many of the chips are in place but unconnected. Parts of the chip placement were subsequently rearranged. {gallery}newz80/8{/gallery}
 Half Done

Showing the rear connector. Some way into the construction and much of the video circuit is complete. By this time I could use the monitor to check that the row counter, column counter, address multiplexing and graphics data pathways were functioning correctly. Of course, they weren't, but I fixed everything as it arose rather than wait to the end and have to rebuild everything in one massive debugging operation. Note the Flash ROM socket at the top left of the photo. At this time I had not yet decided to abandon it in favour of an IDE hard disk, to be added later. {gallery}newz80/9{/gallery}
 Completed Board

All socketed chips are now in place. The bundles of wires laid between the chips are tied at suitable intervals to make everything tidy. Note the Surface-Mount ROM chip in its socket at the top left of the photo. Next to the 16 MHz quartz crystal at the bottom left of the board is a small Red LED which lights when power is applied. The idea is that I wouldn't then start soldering the board when it was still switched on and risk damaging something. {gallery}newz80/10{/gallery}
 Underside of Completed Board

 Showing the details of the construction. Unlike many builders I don't use copper-stipped matrix board. Mine is plain with holes on the standard 0.1-inch matrix. I have always built on this kind of board and find the component density can be made high resulting in a compact circuit. Sometimes if you put the chips too close together things can get a little crowded. {gallery}newz80/11{/gallery}
 Circuit Diagrams
 CLICK HERE to download a .pdf file containing the 5 pages of circuit diagrams. The description of each page is below.

 Page 1 of 5: Clocks and Sync generator

The video timing generator circuit is almost identical to the one I designed for the Great Z80
Project. Therefore I have shamelessly copied much of the following description from the origin
al .

 3 / 10

images/stories/newz80/circuit.pdf
z80.html
z80.html

Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

This part of the circuit, shown on page 1, is responsible for generating appropriate horizontal
and vertical synchronisation pulses for the monitor, and synchronising the rest of the display
circuit so that all the right pixels come out in the right places. Standard UK television resolution
is 625 lines, with a refresh rate of 50 frames per second. In reality this is slightly confusing,
since each frame actually only contains 312 lines. Any one frame only draws every other line,
then the next frame comes and draws the other half of the lines, which is called interlacing.

Originally I used a Phillips 9-inch black & white monitor , but managed to procure a very
nice microvitec colour monitor. It is capable of many different resolutions and refresh rates, but
for simplicity I (and so I could use the same timing circuit as my original) I used the same timing
as the Phillips monitor. i.e. a horizontal scan frequency of 15,625 Hz and vertical refresh rate of
50 Hz. Each line takes 64 uS (microseconds) to draw, of which a total of 16 uS is spent on the
border to the left and right of the display area, and retracing to the start of the next line.
Therefore the actual drawing area is 48 uS wide. I only draw 256 lines, the remaining 56 are the
border at the top and bottom of the screen, and the vertical retrace. Into this 48 uS line, I
squeeze 512 pixels, meaning each pixel lasts for 93.75 nS (nanoseconds).

At the top left is the 16MHz crystal oscillator circuit, from which all timing signals for the whole
computer are derived. Dividing by four gives 4MHz which is the clock signal for the Z80.
Dividing some more using dual 4-bit counter chip IC2 (74LS393) gives other frequencies for use
in the timing of the monitor video signal. IC4 and the gates around it derive the Horizontal
synchronisation pulse, which comes once per line in the 16 uS horizontal blanking period. IC7b
and IC3 count 256 lines which represent the viewable display area. When the 257'th line
arrives, it resets the counters (IC3) and IC5 starts counting. IC5 and IC6 count 56 rows, which
are the blank lines at the top and bottom of the picture. The gates at the bottom left generate
the vertical synchonisation pulse for the monitor, somewhere in the middle of the vertical
blanking period.

There's a funny story about the row counter IC3. At first things didn't work as intended.
However, since this was the second time I built this circuit, I had none of these difficulties. For a
laugh, click here to read all about the debugging of the first project.

 Page 2 of 5: Timing Generator

After the clock generation and synchronisation pulses generated on page 1 of the circuit, comes

 4 / 10

z80.html
z80.html

Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

some more timing logic.

Unfortunately the pixel rate requires a division of the primary 16 MHz clock by 3. Dividing by 3 is
very easy but dividing by 3 and obtaining an equal mark/space ratio turned out to be a lot
harder. Of course, my previous Z80 project also required 16 MHz / 3 for the pixel clock. I don't
know if that worked properly or not. In this case when testing the video circuit with the monitor,
it was readily apparent at first that alternate pixels on each horizontal line were brighter. The
display was very ugly - when displaying text, instead of each whole character appearing a
uniform brightness, vertical lines in the bright pixel column stood out clearly, etc. This is a direct
result of alternate pixels being displayed for unequal times due to an unequal mark/space ratio
in the divide-by-3.

To resolve this problem I created the elaborate divide-by-3 circuit shown, partly by trial and
error. I used a 74LS163 presetable synchronous binary counter. Synchronous counters
guarantee that all the binary outputs will change state at exactly the same time. The more usual
asynchronous counters operate by chaining a number of D-type flip flops. The first is clocked,
its output clocks the next and so on. In this way the count propagates down the chain such that
the more-significant bits of the binary count change state a little later than the less significant.
Because of this you often see the asynchonous type referred to as "ripple counters". I chose to
use a synchonous counter as I was having enough trouble getting the timing exact anyway
without having to worry about the inprecisions of a ripple counter.

The strategy is to load the counter with the number 13. 2 pulses later the count reaches 15. It
cannot go any further than this because it's only a 4-bit counter. So it asserts a logic high on its
TC output (TC = Terminal Count), which I use to drive the PE input (PE = Preset Enable). The
following clock pulse loads the counter with 13 again. In this way the count will be 13, 14, 15,
13, 14, 15 etc. The time spent in each of the 3 states is exactly equal since the counter is
synchronous. The OR-gate IC32a has 2 inputs. One is driven by the TC pin, causing a high
pulse on the count of 15. The other is driven by NOR-gate IC9b. The output of this gate is a
logic 1 only during the second half of state 13 (when the counter's Q1 output is 0 and the 16
MHz clock is 0). In this way the output of the OR-gate is 1 twice during each count of 3, i.e.
during state 15 and the 2nd half of state 13. The leading edge of this pulse arrives exactly
regularly. Applying this to the clock of D-type flip flop IC38b results in an output at pin 9 of IC38b
which is has a frequency of exactly 16 MHz divided by 3 and an equal mark/space ratio. This is
signal C0, i.e. pixel column 0. All of this is also illustrated in the timing diagram at the bottom
right of the circuit diagram.

A small word about the CLR input of the flip flop IC38b. Why did I connect it to the Q0 output of

 5 / 10

Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

the 13, 14, 15 counter? This forces the phase of the CO signal to be in the first of two stable
states. The situation I want is for the C0 signal to go low on the second half of the 16 MHz clock
in state 13. This connection forces this to occur. Without it, I found that more-or-less at random
the circuit could fall into the other stable state, i.e. C0 shifted 3 halves of the 16 MHz clock. Why
do I care which configuration is used? Because I also have to create signals later to load the
shift register and enable the video output at the start and end of each horizontal line. Without
forcing the phase of C0 I got some peculiar effects - half the time the first pixel would
dissappear off the left of the display.

A divide by 3 signal is also required to clock the pixel shift register at the character ROM output,
for displaying the characters in the text mode. I thought I would be able to use the input to the
clock of IC38b, since the leading edges are regular at the divide by 3 clock frequency. As it
happened this was not the case. Using that signal directly resulted in the shift register being
clocked at half the required rate, such that only the first half of each character appeared,
stretched out over the entire character width. I don't know why this didn't work but rather than
worry too much about it I inserted the quad XOR-gate IC40, arranged in the classic
edge-detector configuration. This generates a pulse every time C0 changes state. The
frequency of this signal is 16 MHz divided by 1.5.

Also shown on this page are the column address counters (IC13a and b), and some confusing
circuit around the D-type flip flops IC41a and b. These generate the video enable output, which
is '1' while the video beam is in the displayed part of the screen, and '0' at the edges and during
horizontal and vertical flyback. This signal is generated from the LINE and FRAME signals from
page 1, but it's not quite so simple - additional gating is required to delay the VIDEO EN signal
by an appropriate amount such that the right edge of the display is not cut off. Originally I found
that the leftmost character displayed what I thought should appear at the far right of the screen.
Eventually I realised that the RAM lookup followed by character ROM lookup and latch actually
delays the output of a character by one full character width, so I have to delay the VIDEO EN
signal by a similar amount. The circuit also has to work properly when displaying graphics.
Once I had it working with text, it then didn't work with the graphics mode. Only after much trial
and error did I come up with the current circuit, which perfectly synchronises the VIDEO EN
signal, divide-by-3 counter, column counter and ROM-shift-register-load.

 Page 3 of 5: Video RAM, Character ROM, Timing Generator,
multiplexing

So, the heart of the video generation circuit.

 6 / 10

Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

Here we see the 62256 video RAM (32K), and 28C64 8K EEPROM character ROM. Also note a
multitude of 74LS157 quad 2-1 multiplexer chips, which I use to direct data and address busses
according to the required mode. What mode? The video circuit has 4 modes of operation:

 o Boot: Only the top 1K of the ROM is used for the character patterns. At switch on, the lower
7K is used to boot the computer
 o CPU Read/Write: In this mode the CPU can read and write the RAM which holds the
displayed character codes or graphics bitmap
 o Text Mode: RAM holds 16 pages of 64 x 32 characters, character patterns generated by the
ROM
 o Graphics Mode: RAM holds 32K bitmap, 512 x 256 x 4 or 256 x 256 x 16 (hor, vert pixels,
colours)

 To illustrate the data flow in each of the four modes I drew some block diagrams, then I
coloured them blue to show addresses and red to indicate the data path. The active IC's in each
case are coloured yellow. The 74LS245 octal bus tranceiver operates as a bidirectional switch.
Trapesoidal symbols represent the 2-1 multiplexers which are made up of several 74LS157 IC's
(each 74LS157 contains 4 2-1 switches). By switching the multiplexers and opening the
74LS245's in the correct combination the circuit has the required configuration for each mode.
More explanation follows!

 Mode 1: Boot
 The computer enters this mode after a system reset (e.g. when first switched on). So that I didn't have to use a separate ROM chip for the boot program, and given that I had 7K spare in the character ROM, I decided to use it as the boot ROM. In boot mode the CPU address bus is routed to the 28C64 ROM and the ROM's data bus is routed back to the CPU via the two 74LS256 octal bus tranceivers (IC19, IC22). During this time the screen is black. {gallery}newz80/12{/gallery}
 Mode 2: CPU Read/Write
 To write anything at all to the screen the CPU needs to take control of the display RAM from the video circuit. This is done by setting bit 7 of output register 0 to 0. Then the CPU can read and write to the RAM at will, but of course during this time the screen is black. It is actually better if the CPU only activates mode 2 when the monitor is in flyback so that interference or flickering doesn't show on the screen. At some point I ought to make an interupt circuit to signal the processor when the vertical sweep is finished, so that it can use the dead-time to do its display RAM access. {gallery}newz80/13{/gallery}
 Mode 3: Text Mode
 Text mode is selected by setting bit 6 of register OUT0 to '0'. Only 2K of the display RAM is enough to hold a screen full of characters (64 columns by 32 rows). Therefore I divide the 32K RAM up into 16 pages, which I select using bits 0-3 of the OUT0 register (control signals SCR0-3). These page selection bits drive the upper 4 bits of the RAM address bus. The rest of the RAM address is built from the column and row address counter outputs, with the exception of row 0, 1, 2. These three signals must select the row of the character pattern in the ROM, given that each character is mapped on a 8 x 8 pixel grid. {gallery}newz80/14{/gallery}

When the 7-bit ASCII character code is read from the display RAM, it is routed to the address
inputs of the character ROM. The 3 least significant bits of the ROM address are formed from
row 0, 1 and 2. Therefore the correct pixel row of the 8 rows which constitute the pattern for
each character are displayed in the correct place. During text display, the upper 3 bits of the
ROM address are forced to '1', selecting the top 1K of the 8K ROM, which is where the
character patterns are held.

When one 8-pixel row defining the pattern of one eighth of a single character is ready at the
data output of the character ROM, it is loaded into the 74LS165 parallel-load shift register
(IC13). In the following 8 pixel clocks the state of each pixel is shifted out of this shift register.
IC29 the quad 2-1 multiplexer (74LS157) selects between 4 text bits or 4 graphics bits. But the
shift register only outputs 1 bit for the character pattern (Bit 0, e.g. corresponding to black or
white). What about the remaining 3 bits? These 4 bits are fed to the colour pallette chip which
gives me some flexibility of how I may want to use them. I decided to set them as follows.

 7 / 10

Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

Bit 1 comes straight from bit 7 of the display RAM. Recall that the ASCII code specifies only 128
characters, taking only 7 bits. I therefore have a spare bit which I can use with each character
as an display attribute of that character. Depending on the pallette settings this could specify
that the character is a different colour for example. However for even more flexibility I connected
Bit 2 to the "FLASH" signal, which is the 50 Hz vertical synchronisation pulse divided by 16, i.e.
something a little over 3 Hz (flashes per second). Then I connected Bit 3 to the output of a
4-input NAND gate such that it will be '0' during the last row of the 8-row character pattern, '1'
otherwise. Depending on the colour settings in the pallette I can then use bit 7 to cause a
character to flash, be underlined, or a different colour (including being displayed in "inverse"
colours, e.g. black on a white background instead of white on black). Neat.

 Mode 4: Graphics Mode
 Graphics mode is selected by setting bit 6 of register OUT0 to '1'. Here the character ROM is not used, instead the entire 32K display RAM specifies the picture to be displayed. By design each byte of display RAM contains 2 pixels, i.e. there are 4 bits per pixel giving 16 colours. In this case the screen resolution is 256 x 256 pixels. The RAM data is latched in 74LS273 octal latch IC27. The output of this latch is fed to 74LS157 quad 2-1 multiplexer IC28, which selects between the upper 4 bits and the lower 4 bits (first or second pixel of the byte). Via the text/graphics selecting multiplexer IC29 these 4 bits arrive at the colour pallette chip. {gallery}newz80/15{/gallery}

The pallette chip can take 8 input bits (256 colours). To be a bit clever I decided to create a high
resolution mode by simply connecting bit 5 of the pallette input to the column 0 (C0) counter
output. This will be '0' in the first half of one of my ordinary 256 x 256 pixels and '1' in the
second half. Merely by carefully programming the colours in the colour pallete I can then choose
either a 256 x 256 x 16-colour graphics mode or a 512 x 256 x 4-colour mode! The remaining 3
bits of the colour pallette input I just drive from bits 0-3 of the OUT3 register. Therefore I can
program 8 seperate pallettes and switch between them easily.

Note that I don't make any special arrangements for to ensure that the pixel mapping in the
display RAM is convenient i.e. adjacent pixels occupy consecutive memory addresses. Due to
the R0, R1 and R2 signals going direct to the character ROM during text mode, the addressing
requirements would be somewhat different for graphics mode. To line up the pixels
consecutively I'd have had to use yet another set of 74LS157 2-1 multiplexers to route the row
and column count correctly. I decided against this, given that it will be simple to write an
alogorithm in software to convert a normal X, Y pixel address to the corresponding display RAM
address.

 Page 4 of 5: CPU, Main memory, output ports

Here I finally show the actual Z80 CPU. It always surprises me that the circuit surrounding the
CPU is actually the easiest and simplest part of the whole circuit. The real complication is in the
video driver circuit.

 8 / 10

Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

IC42 the Z80B itself needs no explanation. The 431000 static RAM used as the main memory is
in fact a 128K device. This creates a problem because the Z80 address bus is only 16 bits wide,
implying a maximum address space of only 64K. I therefore divide the 128K memory into 4
pages, which I select using the two bits 4 and 5 of the OUT0 register (labelled STTS A15 and
STTS A16).

The pallette register is programmed on output port OUT1. This page of the circuit diagram
shows the OUT0-7 output decoder IC34, a 3-8 decoder. This decodes bits 4, 5 and 6 of the
CPU's output port address space. The keyboard interface uses the same circuit I used in my old
Z80 project. 4 address lines A0 to A3 are sent to the keyboard and decoded into 16 lines by a
74LS154 (4-16 decoder) inside the keyboard case. 8 data lines return from the keyboard matrix
and are read back from the keyboard using the OUT2 signal. 4 8-bit 74LS256 bus tranceivers
buffer signals from the computer to the outside world, via the expansion connector (IC's 35, 36,
37 and 50). The reset circuit also comes directly from the original Z80 project. It generates a
reset pulse on switch on and when the CPU BUSRQ signal goes high. I use this to program the
main memory via the switchboard, until such time as the computer can be programmed in a
more convenient way by the keyboard!

The following is the IO map of this Z80 Computer. Addresses not in this list aren't currently
used...

0-15: Status register (video), write only. Any IO in the range 0-15 writes the register.
 Bit 0: SCR0)
 Bit 1: SCR1 >-- Selection of display RAM page in text mode
 Bit 2: SCR2)
 Bit 3: SCR3)
 Bit 4: A16 (main memory page 1)
 Bit 5: A15 (main memory page 0)
 Bit 6: '0' = TEXT mode, '1' = Graphics mode
 Bit 7: '0' = CPU read/write mode, '1' = video circuit TEXT and GRAPHICS modes

16-19: Pallette registers 0-3, read/write

32-47: Keyboard scan lines 0-15, read only

48-63: Control register, write only
 Bit 0: PALLETTE 5)
 Bit 1: PALLETTE 6 >-- Bits 5-7 of the pallette input. Specify 1 of 8 32-colour pallette pages
 Bit 2: PALLETTE 7)
 Bit 3: CAPS LOCK: Signal to drive the keyboard Caps Lock key's built in LED
 Bit 4: SOUND: Signal fed to expansion connector, could drive a piezo sounder
 Bit 5: OUT 0)

 9 / 10

Z80 Computer

Written by Hans Summers
Monday, 25 January 2010 18:59 - Last Updated Monday, 22 December 2014 06:49

 Bit 6: OUT 1 >-- Output signals fed to the expansion connector
 Bit 7: OUT 2)

 Page 5 of 5: Chip placement

The last page shows the chip placement on the board, and the pinout of the expansion
connector.

 Homebrew Z80 computer by Marton Kun-Szabo

Don't miss this fantastic Homebrew Z80 computer built by Marton Kun-Szabo
(Hungary).

 10 / 10

http://digitarworld.uw.hu/

